

$$\Delta y \approx dy = \int_{1}^{1} (c_{3} \cdot \Delta y) (c_{3}$$

Example 38. A spherical water tank of radius 5 meters is to be painted. The thickness of the paint on the sphere will be 3 mm. Use differentials to approximate the amount of paint in m^3 that it will take to paint the water tank. How many gallons of paint are required?

Solution: The volume of the spherical tank is

$$V(r)=\frac{4}{3}\pi r^3$$

$$dV = V'(r) dr = (4\pi r^2) dr = (4\pi r^2) \Delta r$$

Using r = 5 m and $\Delta r = 3$ mm = 0.003 m yields

$$dV = (4\pi \cdot 5^2) 0.003 \approx 0.9425 \,\mathrm{m}^3$$

There are 264 gallons in 1 cubic meter. Hence it will take approximately 249 gallons of paint to cover the water tank.

$$\frac{dv}{dv} = \left[\frac{v'(r)}{ar} \right] \cdot \frac{\Delta r}{ar}$$

$$\frac{\Delta v}{ar} = \frac{av}{ar} \cdot \frac{dr}{ar}$$

ANTIDEDIVATIVE ...

3.6 Differentials and Antiderivatives

Recall that Δy represents the total change of a function y = f(x) as x varies from c to $c + \Delta x$ for some value c. We will use the definition of the derivative to split the total change Δy into two parts, the principal part which is related to f'(x), and the error part. We begin with a theorem.

Proof. Although we can appeal to Lemma 1.3.1 to prove this formula let us show the limit exists by direct calculation. Thus suppose f'(c) exists. Then

$$\lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c) - f'(c)\Delta x}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} - \lim_{\Delta x \to 0} \frac{f'(c)\Delta x}{\Delta x}$$
$$= f'(c) - f'(c)$$
$$= 0$$

We can conclude from this theorem that if a function f is differentiable at x = c, then the quantity that appears in Limit Formula (11) is a **function of** Δx , traditionally denoted $\varepsilon = \varepsilon(\Delta x)$:

$$\varepsilon = \frac{f(c + \Delta x) - f(c) - f'(c)\Delta x}{\Delta x}$$
(12)

By Theorem 1 the function ε has the property $\lim_{\Delta x \to 0} \varepsilon(\Delta x) = 0$. Solving Equation (12) for $\Delta y = f(c + \Delta x) - f(c)$ we have the following.

Theorem 2. If f is differentiable at c then $\Delta y = f(c + \Delta x) - f(c)$ satisfies $\Delta y = (f'(c) + \varepsilon)\Delta x \qquad \text{if } \Delta \kappa \to 0 \qquad (13)$ where the function ε has the property that $\Delta y \stackrel{\text{def}}{=} \Delta y = \int_{-\infty}^{\infty} \frac{1}{2} (c_{-}) \cdot \Delta y$ $\lim_{\Delta x \to 0} \varepsilon(\Delta x) = 0$

110

Calculus for Engineers and Scientists, Volume I

©2014-17 J. E. Franke, J. R. Griggs and L. K. Norris

Last update: November 2, 2018

The term $f'(c)\Delta x$ in Equation (13) is called the **principal part** of Δy , since this is the part that is determined by the derivative f'(c), and the term $\varepsilon \Delta x$ is called the **error part** of Δy . The two parts of Δy are shown in the following figure.

Figure 82: $\Delta y = f'(c)\Delta x + \varepsilon \Delta x$

REMARK: There are two notations involving ε and Δx which look very similar but have quite different meanings. This first comes from the definition of ε as a *function* of Δx . In this case we write $\varepsilon = \varepsilon(\Delta x)$. The second is the product of ε and Δx , $\varepsilon \cdot \Delta x = \varepsilon \Delta x$. This product is the *error* in using $dy = f'(c)\Delta x$ to approximate Δy .

Let's look at two examples to see what ε looks like in specific cases.

Example 34. Let $f(x) = x^2$ with f'(x) = 2x. Find the function ε that appears in the Formula (13) above.